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Summary. A new efficient first-order CASSCF method (multiconfiguration 
SCF (self consistent field) in a complete active space) is described. Its main 
characteristics are (i) use of the generalized Brillouin theorem (Fock-operator 
method), (ii) renormalization of single excitations, (iii) fast microiterations 
containing only two-index transformations, i.e. M 3 N  2 steps. Convergence is 
generally reached in eight to twelve macroiterations. The method is applied 
to several examples (LiH, N2, AIO) and compared to other MCSCF (multi- 
configuration SCF) methods. 

Key words: First-order C A S S C F -  Brillouin cond i t ions -  Renormalization 
of single excitations 

I. Introduction 

Both first-order (linearly convergent) and second-order (quadratically conver- 
gent) MCSCF methods are widely used in modern electronic structure calcula- 
tions. For very detailed recent reviews we refer to the papers of Olsen et al. 
[1], Werner [2] and Shepard [3] concerning second-order methods and Roos [4] 
concerning first-order methods. First-order methods are probably more 
frequently used in numerical applications, since they are conceptually simpler 
and easier to implement. However, general first-order MCSCF methods converge 
very slowly, if they converge at all; reasonable convergence behaviour could 
only be achieved for the special class of CASSCF (complete active space 
SCF) wavefunctions [4]. Therefore much effort has been concentrated in the 
past few years on improving second-order MCSCF methods. New developments 
of first-order methods were limited to two-configuration SCF wavefunctions 
[5-8]. 



96 U. Meier and V. Staemmler 

In this paper we present a simple first-order CASSCF method based on the 
Fock-operator technique. The method is closely related both to the formalism 
proposed by Hinze [9, 10] (but the single excitations are renormalized) and to 
the super-CI (configuration interaction) CASSCF method of Roos et al. [11- 
13]. The main idea is that the time consuming partial integral transformation in 
the microiterations can be completely avoided with the consequence that the 
microiterations become very fast. This idea has not yet been used in first-order 
methods, but is closely related to techniques applied in second-order MCSCF 
programs. Convergence is generally reached in eight to twelve (macro) itera- 
tions which corresponds to the convergence rate of standard closed shell SCF 
calculations. This also holds in many cases for excited states which are not the 
lowest of their symmetry as well as for "average of configuration" states. 

We will show for some small and medium size examples that our first-order 
method is competitive with second-order methods as far as convergence rate 
and computational effort are concerned. In addition it is much simpler from the 
point of view of programming since no second derivatives are needed and the 
Fock equations are solved iteratively as in conventional closed-shell SCF meth- 
ods. The simplicity of the algorithm also allows highly vectorized computer 
code. 

2. Fock-operator method 

For the definition of the Fock matrix elements we adopt the notation of Roos 
et al. [12, 13]. The total orbital space is decomposed into three subspaces 
containing inactive (core), active, and virtual orbitals. We will use p, q, r, s as 
general MO (molecular orbital) indices, i, L k, l as core MO indices, t, u, v, w 
as active MO indices, and a, b, c, d as virtual MO indices. 

The multiconfiguration wavefunction ~0 is a sum of Slater determinants 
(SD) or configuration state functions (CSF). 

0o = (1) 
I 

The wave function ~b o that minimizes the energy has to satisfy the orbital 
restricted Brillouin condition [14] 

- = o ,  ( 2 )  

where JEpq is a spin averaged excitation operator. The Brillouin condition is 
modified in the way suggested by Roos [12] 

1 
I/Ipq--x/lTpp_TqqlP_,pql~O , (3) 

where 7pp is the occupation number of  the orbital p, such that the singly excited 
functions are normalized 

(Opq [l~pq ) = 1. (4)  
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The modified Brillouin condition can be written as 

npq = ( ~ / 0 ] / ~ [ ( ~ p q  - -  I~qp) > = O. ( 5 )  

For later use we define the first- and second-order reduced density matrices ~pq 
and Fpqrs by 

7pq = ~ C l ( ~ ) l [ E p q [ ~ ) y > f  j ,  (6) 
1,J 

1 ~ 
Fpqrs : ~ ~ C l ( ~ 9 1 ] E p q E r s  - 6qrf f~psl f~s>C J. (7) 

l,J 

For the evaluation of the matrix elements Bpq one makes use of special properties 
of the density matrices 

~,i = 2, (8) 

F iijj "~- 2, F ijji = - -  1, F iiii = 1, F iitu = ~ tu ' F itui = - -  2 ~) tu (9) 

All other density matrix elements with combinations of inactive indices different 
from those in Eqs. (8) and (9) vanish as well as all density matrix elements 
having at least one virtual index. This holds whenever the core orbitals are 
completely occupied and the virtual orbitals completely empty, i.e. ~)aa = na = 0 
for the virtual orbitals and Vii = ni = 2 for the core orbitals in each SD (or CSF) 
entering in (1). 

In the case of a CASSCF (complete active space SCF) wavefunction [12] 
where the CI-expansion within the active orbital subspace is complete only three 
types of singly excited functions ~lpq interact with 40, namely core-virtual, 
active-virtual and core-active excitations. The modified Brillouin condition (5) 
for these excitations can be expressed with the help of two operators 

F p q  re - -  hpq "-[- ~ {2(pq ]ii) - (p i  ]qi)} (10) 
i 

Gp? = ~ 7,. {(Pq I tu) - �89 Iqu)} (11) 
tu 

a s  

core ~ virtual (i ~ a) 
1 

B.i  = ~ {2F,~ ~ q- 2Ga~ t } (12) 

active --+ virtual (t -~ a) 

Bat -- _/~- v,uF] ~176 + 2  ~ Ftuvw(aulvw ) (13) 
x /7 ,  u v w  

core ~ active ( i  ~ t) 

_ 1 { x/"~ - Y- . . . . . . . .  } Bti ~ 2 F ,  +2Gt~. ~t - ~ . T t u F , , i  - 2  ~, F,uvw(iUlvw) . (14) 
u u V w  
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We now define a hermitian matrix B containing the matrix elements (12)-(14) in 
the off-diagonal blocks [15, 16] 

Core 

Active 

Virtual 

If  this matrix is  diagonal, obviously, the Brillouin conditions (12)-(14) are 
satisfied. One can even add arbitrary diagonal blocks (B,~, Bt,, Bah) without 
changing the Brillouin conditions (12)-(14). However, a reasonable choice of the 
diagonal blocks might accelerate the convergence rate. In our treatment they are 
set to zero except for the diagonal elements which are chosen as 

~22 act Bp, = {2F~ ~ + 2Gpp }. (15) 

It should be emphasized that in general MCSCF wavefunctions the block B,, 
contains Brillouin conditions for rotations between partly occupied orbitals and 
cannot be chosen arbitrarily. 

The definition of  the off-diagonal blocks of the operator B given so far is 
equivalent to the one used in other MCSCF methods [11-13, 17-23]. We have 
only repeated those formulas which are necessary to understand the simplifica- 
tion of the microiterative equations which we shall derive in the next section; for 
more details we refer the reader to [12, 13]. 

3. Microiterative equations 

The diagonalization of  the B-matrix 

B C '  = ~C' (16) 

defines a unitary transformation from the old orbitals C to a new set of  orbitals 
C'  

C" = U C  = (1 + O)C,  (17) 

triP> = IP'> - I P >  = ~ [q>Dpq. (18) 
q 

Note, that according to the definition of B elements Dpq connecting the same 
orbital subspace are zero to first order. In conventional SCF or MCSCF 
procedures a microiteration consists of a diagonalization of the B-matrix and a 
recalculation of B'  in the new vectors tp'> without changing the density matrix 
elements 7,, and Ft .. . .  that enter into Eqs. (13) and (14). 

If  we apply this procedure for Bat (Eq. (13)) and take only linear terms in the 
D m explicitly (assuming for a moment that F c~ is a constant one-electron 
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operator), we get 

o o 

+ 2 • Ftuvw[(pulvw)Dpa q- (ap[vw)Dp~ 
p u v w  

+ (au lpw)Dp, + (au [vp)Dp,,] } + O(D2), (19) 

or if we express the two-electron integrals by J and K operators 

B'~,.= B., + /~,, ?%[F~, Dp~ + Fap Dp.] 

+ 2  • r,.,,w[(PlLwlu>Dpo +(a[Jvwlp)Dp. 
p u v w  

+ <a tKuw Ip>D~, + <a Ix~o lp>Dp~] } + O(Z)~), (20) 
where p runs over all orbital subspaces. If we neglect the Dpq elements which 
connect orbitals of the same subspace, the only exchange integrals that enter into 
Eq. (20) are of the following type 

<alg~lb>D~w, (alguv[i)Oiw. (21) 

Apparently, they have two indices in the active space and two indices outside the 
active space. These integrals can be assumed to be small, especially when the 
orbital subspaces are well separated and a certain shell structure is reproduced by 
the choice of the orbital spaces. B~,c can thus be approximated by 

p u  

+ 2  E F,.ow[<PIL~[u>D~o+<aIL~[P>D,.]~" (22) 
p u v w  ) 

According to the definitions of B and C' this can be rewritten as 

Ba,c = ~ t  Y"(a'IF~~ + 2 ~o~Y" r,oow<~'lJo~ lu'>. (23) 

The changes in F ~176162 and G act can be neglected for the same reasons. 
A similar consideration leads to 

~,,,,_ 1 {2(t,t F .... [i') + 2(t'[G~r - ~ )',,(u'lFr176 ") 

- 2 s v,~,,w<u'lLwlr>~, 
% 

(24) 
u v v c  ) 

Ba'," = 4 {2(a'[Fr176 + 2(a'[G~~ �9 (25) ,/z 
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Thus the matrix B'  can be approximated by the matrix B which is simply 
evaluated by transforming the Jaw-operators as well as F ~176 and G act into the 
new basis C'. In contrast to conventional, e.g., closed-shell, SCF methods this 
transformation does not mean just a change of  the basis for a fixed operator, but 
because of the u-summation in Eqs. (23) and (24) a construction of new 
operators (except for Eq. (25)). 

The matrix B defines a new unitary transformation and therefore a new 
microiterative cycle. This is repeated until /~ becomes diagonal. This does not 
imply that B'  itself is diagonal at the end of a microiterative cycle. However, 
since our approximations affect only the second derivatives of  the energy with 
respect to the orbitals and since the first derivatives, i.e. Bat etc., are calculated 
exactly once in each macroiteration, the whole process converges to the correct 
solution. It should be noted that it is necessary to choose the "diagonal" blocks 
of  B as zero (except for the diagonal elements); otherwise the Opq connecting 
orbitals of the same subspace are not zero to first order and the approximations 
leading to (23)-(25) are not justified. This implies that our procedure is only 
reasonable for CASSCF wavefunctions. This point has been mentioned before by 
Werner and Meyer [ 17]. 

Thus, our first-order CASSCF method consists of the conventional interplay 
between macroiterations and microiterations: each macroiteration contains a 
complete CI calculation in the active space, the calculation of the density 
matrices ~ and F and the construction of the operators F c~ G act and all Jvw with 
v and w running over the active orbitals. In the microiterations only transforma- 
tions of the operators F c~ G act and Jvw are necessary, this needs only M2N 3 
floating point operations, where N is the number of basis functions and M the 
number of active orbitals. Equations (23)-(25) show that only J-operator matrix 
elements containing three active indices are needed, which cuts the number of 
floating point operations further to �89 2 if the matrix elements of the 
second-order density matrix, Eq. (7), are symmetrized in the first two and in the 
last two indices. Since the microiterations need no N 4 steps, i.e. no sweep 
through the AO (atomic orbital) integral list, they are very fast and it not so very 
crucial to keep their number as small as possible. If  one is not too far from the 
final solution, 10-15 microiterations are sufficient, however the approximations 
in Eqs. (19)-(22) result in much worse convergence if one is far from the desired 
solution. 

It should be noted that Werner and Knowles [19, 20] use similar "one-index 
transformations" in their orbital optimization. But since they calculate second 
derivatives they also have to calculate and transform the K operators; further- 
more, their microiterations contain CI-coefficient updates which are completely 
absent in our scheme. 

The renormalization (3) of the single excitations resulting in the factor 
([~pp-)'qq t) -I/2 in the Bpq elements is crucial for the convergence behaviour of  
our method. This factor gives a large weight to those rotations that do not affect 
the energy very much, i.e. those between core orbitals and almost doubly 
occupied active orbitals as well as between virtual orbitals and nearly empty 
active orbitals. Without introducing these factors, in many cases with weakly 
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occupied active orbitals convergence could not be achieved, but this renormaliza- 
tion almost guarantees convergence. 

Finally, we applied the usual methods (damping, energy denominator shifts, 
DIIS [24, 25] etc.) to improve convergence both of the microiterations and of the 
macroiterations. For  the microiterations Pulay's DIIS method [24] is switched on 
automatically as soon as the squared norm of the residual vector (the parameter 
2 in [24]) is smaller than ~ 10 -5 (in most cases after 5-6 microiterations). The 
same threshold is used for the macroiterations, but is generally reached only after 
7-10 iterations. 

4. Test calculations 

First tests of our method have been performed for the two lowest 1S + states of  
LiH at an internuclear distance R = 3.0a0 which is close to the equilibrium 
distance of the X1S + ground state. At this distance the ground state wavefunc- 
tion is dominated by the configuration la22a 2, all other conf igurat ions-even 
la23a 2 which is necessary for the proper dissociation into Li and H -  are rather 
weakly occupied. The inclusion of the very weakly occupied 4a and 5a orbitals 
in the active space causes severe convergence problems in conventional first- and 
second-order MCSCF procedures. 

For comparison we have also used the second-order MCSCF program of 
Shepard et al. [21-23] in a version adjusted by Schmitz [26] to the Cyber 205. 
These calculations are denoted by UEXP2 in the tables. The calculations with 
our new first-order method are denoted by RFO1 ("renormalized Fock operator, 
first-order"). 

The Gaussian basis set for LiH has been taken form [18] and consists of 

Li: 1 ls5p in the contraction 5, 6 x 1/2, 3 x 1, 

H: 7s2p in the contraction 3, 4 x 1/2 x 1. 

Slight differences between our final energies and those reported by other 
authors or calculated by Shepard's program are due to the fact that we are using 
Gaussian lobe functions [27, 28] instead of Cartesian Gaussians [29, 30]. 

For  all RFO1 and UEXP2 calculations on LiH as presented in the Tables 
l a d  we always started from the (occupied and virtual) SCF orbitals of LiH +. 
Table la shows that our convergence is similar to that obtained with Shepard's 
program for the calculation with three active orbitals (CAS3) for the X~Z + 
ground state. 

We have performed the same CAS3 calculation under four different condi- 
tions: 

i) With renormalization (Eq. (3)) and with microiterations as described in the 
previous section: 9 macroiterations were sufficient, as documented in Table la. 

ii) Without renormalization, but with microiterations: 16 macroiterations 
(AE = - 3 . 7 E -  10). 
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iii) With renormalization, but only one Fock-operator diagonalization per 
macroiteration: after 100 macroiterations A E  was still as large as - 2 . 3 E  - 8. 

iv) Without renormalization and with only one Fock-operator diagonalization 
per macroiteration: A E  = - - 9 . 2 E -  6 after 100 macroiterations. 

Pulay's convergence acceleration [24] could not be applied to the two calcula- 
tions without microiterations because of  strong linear dependence of  the consec- 
utive Fock operators. 

In the calculation with four active orbitals (CAS4), Table lb, the 5a orbital 
is very weakly occupied (ns~ = 0.000391). Shepard's method seems to converge 
first to the CAS3 (2a, 3cr, 4a) solution and to start optimizing the 5a-orbital only 
after seven macroiterations. Due to the renormalization, Eq. (3), our method 
converges much more smoothly to the CAS4 result. Table lb shows that our 
first-order methods need no more macroiterations than Shepard's second-order 
treatment. The final convergence is obtained in the RFO1 calculations by 
application of Pulay's DIIS [24]. Convergence of the first excited ~Z + state is 
reached in 11 iterations as shown in Table lc. With our version of  Shepard's 
program this state did not converge. 

In a density matrix formulated MCSCF algorithm a simultaneous optimiza- 
tion of several states can easily be performed by averaging the first- and 
second-order reduced density matrices [18] 

~pq ~ i i = w ypq, (26) 
i 

l'pqrs ~ ~ W il" i pqrs 
i 

w i =  1. (28) 
i 

The w i are arbitrary weighting factors for the states i. The energies obtained for 
each state i are upper bounds for the true MCSCF energies. Table ld shows a 
calculation for X12; + and A 1S + with equal weights for both states. A similar 
calculation with a smaller basis set has been performed by Werner and Knowles 
[20] who could obtain convergence after three of  their macroiterations. We 
repeated the calculation with the small basis given in [20]; the convergence 
pattern is the same as for the larger basis in Table ld. 

Our second example is the ground state of  N2. Tables 2-4 contain our results 
for different basis sets and different active spaces together with results reported 
in the literature. All calculations performed by us (RFO1, UEXP2) have been 
started with SCF orbitals from N + , 2 + 2;g throughout. 

The comparison of  our first-order CASSCF with second-order methods 
for the CAS6 (six active orbitals) calculation in Table 2 shows that we need 
about twice as many macroiterations (including one Pulay extrapolation in 
iteration 8) as the second-order programs. The new technique of Werner and 
Knowles [19, 20] converges even faster. By including CI updates during the 
microiterations they are generally able to achieve convergence after three to four 
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T a b l e  2. C A S S C F  c a l c u l a t i o n s  fo r  N2 ,  X I ~ ,  R = R e = 2.094ao;  ac t ive  space  (3trg, l nu ,  Drg, 3au) a 

M a c r o i t e r a t i o n  R F O 1  a U N E X P 2  a J ~ r g e n s e n  e t  al. b W e r n e r / K n o w l e s  c 

AE/a.u. AE/a.u. AE/a.u. AE/a.u. 

1 - 5 . 8 E - - 2  

2 - 2 . 9 E  - 2 

3 - 1 .5E  - 2 

4 --  5 . 3 E  - 3 

5 --  1 .5E  --  3 

6 - 3 . 6 E  - 4 

7 - 8 . 5 E  --  5 

8 - 2 . 3 E  - 5 d 

9 - 7 . 3 E  - 8 

10 - - 3 . 2 E  --  9 

- 5 . 2 E -  2 - 1 . 9 E - 2  - 5 . 4 E - 2  

- 2 . 8 E  - 2 - 1 .7E - 2 - - 2 . 0 E  - 2 

- 2 . 1 E - 2  - 1 . 7 E - 2  - - 1 . 9 E - 6  

- 1 . 0 E -  2 - - 2 . 7 E - -  3 < - 1 . 0 E - -  12 

- - 4 . 3 E - 4  - 3 . 8 E - -  5 

- - 6 . 9 E  --  7 - 1 .3E  - 8 

F i n a l  e n e r g y / a . u .  - 1 0 9 . 1 0 3 7 9 2  - 1 0 9 . 1 0 3 9 9 4  ' - 1 0 9 . 0 9 5 7 1 8  - 1 0 9 . 0 9 5 7 1 8  

a Bas i s  set  I: H u z i n a g a  ( 5 1 1 1 1 / 3 1 1 )  + l d  ( e x p o n e n t  0.95) 

b F l e t c h e r  o p t i m i z a t i o n  [31], ba s i s  set  see [31] 

c [20], bas i s  set  see [31] 

d A D I I S  e x t r a p o l a t i o n  s t ep  w a s  p e r f o r m e d  in  th is  m a c r o i t e r a t i o n  

T a b l e  3. C A S S C F  c a l c u l a t i o n s  fo r  N2 ,  l + X S g ,  R =  
R e = 2 .094a0;  ac t ive  space  ( 2 % ,  3~rg, l nu ,  l n g ,  3au)  

M a c r o i t e r a t i o n  R O F 1  a R o o s  e t  al. b 

AE/a.u. AE/a.u. 

1 - - 4 . 1 E - -  1 - 1 . 8 E + 0  

2 + 1 .5E  --  4 - 1 . 5E  --  1 

3 - - 2 . 3 E  --  3 - 2 . 3 E  - 2 

4 - - 3 . 2 E  --  2 - 1 .0E  - 2 

5 - 4 . 2 E  --  3 - 2 . 3 E  --  2 

6 - 3 . 4 E  --  3 --  1 .5E  --  2 

7 --  3 . 8 E  --  5 --  5 . 3 E  --  3 

8 - - 5 . 5 E  - 6 - 1 .4E  --  3 

9 --  1 .4E  --  6 c - 3 . 0 E  --  4 

1 0  - -  1 . 5 E  - -  8 - - 7 . 0 E  - -  5 

11 - - 3 . 5 E  --  10 - - 3 . 0 E  - 5 

12 - - 2 . 0 E  - 5 

13 - -  1 . 0 E  - -  5 

14 < --  1 .0E  --  5 

F i n a l  ene rgy / a . u .  - - 1 0 9 . 1 1 0 8 1 9  - -109 .11271  

a Bas i s  set  I, see T a b l e  2 

b S u p e r - C I  m e t h o d  [12], ba s i s  set [12] 

C A  D I I S  e x t r a p o l a t i o n  s t ep  wa s  p e r f o r m e d  in  th i s  

m a c r o i t e r a t i o n  



First-order CASSCF method 105 

Table 4. CASSCF calculations for N2, XIz~ - , R = R~ = 2.094ao; 
active space (2Crg, 2a,, 3ag, lzc,,, lng, 3a~) 

Macroiteration ROF1 ~ UEXP2 a 
AE/a.u. AE/a.u. 

1 --6.1E--2 
2 -- 1.5E -- 2 
3 --1.7E--2 
4 -1.9E - 2  
5 -4.7E - 3 
6 -6.5E --4 
7 - 1.4E -- 4 
8 - 6.6E -- 5 
9 --7.6E -- 5 b 

10 -2.4E - 7 
11 - 1 . 6 E - 8  

- -  6 . 6 E  - -  2 

- 3 . 2 E  - -  2 

- 1 . 8 E  - -  2 

-2.6E - 3 
--9.4E - 5 
- -  1 . 0 E  - 6 

Final energy/a.u. -109.125968 -109.126147 

aBasis set II: Huzinaga (411111/311)+2s (exponents 0.07, 
0.025) + lp (exponent 0.05) + 2d (exponents 1.2, 0.3) 
b A DIIS extrapolation step was performed in this macroiteration 

macroi terat ions.  As discussed in the previous section, one macroi te ra t ion  in our  
first-order scheme is faster than  in all second-order methods  since the evaluat ion 
of second derivatives is completely avoided. 

The CAS7 (seven active orbitals) calculation (Table  3) can be compared  with 

a similar first-order calculat ion by Roos et al. [12] using the super-CI technique. 
In  both  schemes the convergence pat tern is slightly irregular due to the normal -  

izat ion condi t ion  (4). However,  a reliable and  reasonably fast convergence is 
achieved in 10 macroiterat ions.  

Enlargement  of the active space does no t  change the convergence properties 
of our  method  as shown for the CAS8 calculat ion of N 2 1 + X Sg in Table  4. A 
CAS10 calculat ion for the ground state of  N2 (active space: 2ag, 2au, 3ag, 
17Zu, 17Zg, 3O-u, 4o-g, 4O-u) also converged to the same level of  accuracy within 10 
macroi terat ions.  

In  Table 5 we present CASSCF results for various electronic states of 
1 + N2()( ~'g , A3~ '+ , B3_Flg, C3[Iu) at their respective equi l ibr ium distances in order 

to show how dissociation energies De and  excitation energies Te improve when the 
active space is augmented.  For  the calculat ion of  the dissociation energies, the 4S 

ground  state and  the first excited 2D state of the N a tom are needed. The active 
spaces for the CAS6 and CAS8 calculations conta in  only the 2s and 2p valence 

orbitals on N, so they dissociate into " S C F  atoms".  The SCF energies are for basis 
set I (see Table  2): Escv(4S) = - 54.394540 a.u., ESCF(2D) = - 54.290042 a.u., 
(AE = 2.84 eV); and  for basis set II (see Table 4): Escv(4S) = -54 .395644  a.u., 
Escv(2D) = --54.291485 a.u., (AE = 2.83 eV). The CAS10 calculat ion needs a 
CAS5 calculat ion (2s, 2p, 3s) for the N atom; the energies for basis set II are: 

ECASs(4S) -- - 54.403323 a.u., ECASs(2D) = - 54.295335 a.u., (AE = 2.94 eV, ex- 
per imental  AE = 2.38 eV [32]). 
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Table 5. Comparison of  CASSCF results with SCF, PNO-CI, CEPA and experimental results for 
various electronic states of N 2 

State XI S g + .4  3 ff, u + B3 Hg C3 Hu 

R e/a o 2.094 2.470 2.324 2.171 

E(SCF)/a.u. a -- 108.964168 - 108.681451 -- 108.511616 
Te/eV 7.69 12.31 
D e/eV 4.76 -- 0.09 - 4.71 
E(SCF)/a.u. b - 108.974579 - 108.686038 - 108.521180 
T~/eV 7.85 12.34 
D e/eV 4.99 - 0.03 - 4.52 
E(CAS6)/a.u. a - 109.103792 - 108.871532 - 108.762377 
T e/eV 6.32 9.29 
D e/eV 8.56 2.24 2.12 
E(CAS6)/a.u. b - 109.113508 - 108.880123 - 108.766961 
Te/eV 6.35 9.43 
D e/eV 8.77 2.42 2.17 
E(CAS8)/a.u. a - 109.116397 - 108.882557 - 108.824522 - 108.683709 
T~/eV 6.36 7.94 11.77 
D e/eV 8.91 2.54 3.81 -- 0.02 
E(CAS8)/a.u. b - 109.125968 - 108.891123 - 108.828690 - 108.690510 
T e/eV 6.39 8.09 11.85 
D e/eV 9.11 2.72 3.85 0.09 
E(CAS10)/a.u. b - 109.162109 - 108.921932 - 108.851202 - 108.715201 
T e/eV 6.54 8.46 12.61 
D e/eV 9.67 3.14 4.15 0.45 
E(PNOCI)/a.u.  a -- 109.267410 - 108.992183 - 108.839411 
Te/eV 7.49 11.65 
E(PNOCI)/a.u.  b -109.291185 -109.011847 --108.863125 
T e/eV 7.60 11.65 
E(CEPA)/a.u. a -- 109.298878 -- 109.030665 -- 108.892240 
T e/eV 7.30 11.07 
E(CEPA)/a.u. b - 109.326138 - 109.054731 - 108.921119 
T e/eV 7.38 11.02 
T~/eV exp ~ 6.22 7.39 11.05 
D e/eV exp 9.91 3.68 4.90 1.24 

a Basis set I, see Table 2 
b Basis set II, see Table 4 
~ [34] 

A s  it h a s  a l s o  b e e n  s h o w n  b y  o t h e r  a u t h o r s  [19] t h e  c o n v e r g e n c e  o f  t h e  

C A S S C F  r e s u l t s  w h e n  t h e  a c t i v e  s p a c e  is e n l a r g e d  t o  a " f u l l  c o r r e l a t i o n  l i m i t "  is 

v e r y  p o o r .  A l t h o u g h  t h e  d i s s o c i a t i o n  e n e r g i e s  o f  t h e  C A S S C F  c a l c u l a t i o n s  

i m p r o v e  w i t h  l a r g e r  a c t i v e  s p a c e s  in  t h e  N 2 e x a m p l e ,  t h e  e x c i t a t i o n  e n e r g i e s  s h o w  

a n  i r r e g u l a r  a n d  a l m o s t  u n p r e d i c t a b l e  b e h a v i o u r ;  f o r  C A S 1 0  t h e y  a r e  w o r s e  t h a n  

f o r  C A S 8  f o r  all  s t a t e s  a n d  e v e n  w o r s e  t h a n  a t  S C F  level  f o r  BaI-lg a n d  C31FIu . T h e  

r e a s o n  is t h a t  t h e  f r a c t i o n  o f  t h e  c o r r e l a t i o n  e n e r g y  c o n t a i n e d  in  t h e  s a m e  a c t i ve  

s p a c e  m a y  b e  q u i t e  d i f f e r e n t  f o r  d i f f e r e n t  e l e c t r o n i c  s t a t e s .  N o t e  t h a t  t h i s  

p h e n o m e n o n  a l s o  o c c u r s  f o r  t h e  c a l c u l a t i o n  o f  t h e  4S -~ 2D e x c i t a t i o n  e n e r g y  o f  

t h e  N a t o m .  
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For  the states 1 + X ,~g , B3I-lg, and C3IIu which can be described reasonably 
well by an SCF reference wavefunction containing only one Slater determinant 
we have also performed PNO-CI and CEPA calculations [33]. Table 5 shows 
that the CEPA excitation energies are much superior to the CASSCF results 
though the computational effort is smaller than for the CAS calculations. 
(The almost perfect agreement between the CEPA and experimental T e 
values for B3//g and C31Iu might be partly a lucky coincidence.) A 3 S  + cannot 
be treated with our CEPA program since the rc3rc 1 32;+ state is a one-configura- 
tion two-determinant reference which is not included in our CEPA program 
[33]. 

It seems unfair to compare the quality of  CASSCF and CEPA calculations 
since the two methods are designed for two different purposes: CEPA calculates 
dynamical correlation energies while CASSCF is applied to describe quasi-de- 
generacy, i.e. non-dynamical effects. However, in practice it is very hard to 
distinguish between these two sources of  electron correlation. Of course, proper 
dissociation can only be treated with an MCSCF method. But it seems impossi- 
ble to understand--pr ior  to extensive calculations and an analysis of  the wave- 
funct ion--why CASSCF works so well for the excitation energy for the A state 
of N 2, but fails for the B and C states, even though all four states are 
one-configuration reference states. Why is the "dynamical" correlation similar 
in the X and A states but different from that in B and C? We have therefore 
taken the more pragmatical point of  view of applying different methods and 
looking at their results, and to abandon the badly defined distinction between 
dynamical and structural correlation effects. 

As a third less trivial benchmark test we have treated the two lowest 2; 
states of the A10 molecule for which calculations with several other MCSCF 
programs have been published [35, 36]. At its equilibrium distance ( R  e = 3.06a0) 
A10 has a X2S  + ground state, with the leading configuration 
la22a23a21zta4a25a22rca6a27a I and a low lying B2Z + state, with the leading 
configuration la22a23aZlrt44az5a22zc46a17~r 2, which differs from the ground 
state by a single excitation. Table 6a gives the results of a CAS7 calculation 
(active space 2rc6a7a3r~8a) for both states at an internuclear distance of 
R---3.00a0, Table 6b is for the corresponding CAS8 calculation (active space 
5a2rc6o'7~r3rt8o'). The basis set was taken from [35] with a contraction scheme 
for Al of 6, 3, 4 • 1/4, 2 , 3 • 2 1 5  1 and f o r O o f 6 , 2 , 3 • 2 1 5  1/2• 1. As 
in [36] the ground state calculations have been started with an SCF wavefunc- 
tion of the A10-X~Z + ion. The excited state calculation starts with the ground 
state calculation. A maximum number of 20 microiterations per macroiteration 
was sufficient to achieve the convergence of Tables 6a, b. 

The CAS7 ground state calculation can be compared with second-order 
calculations of  Lengsfield and Liu [35] as well as with recent first-order calcula- 
tions reported by Yamamoto et al. [36] performed with their super-CI-MCSCF 
program named JASON2 [36, 37]. JASON2 converges (IAEI(10 -5 a.u.) after 
27 macroiterations, while RFO1 needs only 11 macroiterations for convergence 
(IAEI < 10 -8 a.u.). The second-order Newton-Raphson type MCSCF program 
of  GAMESS which is used for comparison by Yamamoto [36, 38] needs 9 
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Table 6. CASSCF calculations for A10, X21; +, Bz~_, +, R = 3.00a 0 

Macroiteration a. Active space 
(2~, 6a, 7a, 3~, 8a) a 

b. Active space 
(5a, 2n, 6a, 7a, 3n, 8a) a 

X2Z ' + B2~ ' + X2Z �9 + B2Z + 

AE /a.u. AE /a.u. AE /a.u. AE /a.u. 

1 - - I .2E- -  1 - -5 .9E--2  --1.4E--  1 - -2 .5E--2  
2 - -1 .6E- -2  --4.8E--  3 - - 6 . 6 E -  3 - -2 .1E--3  
3 - 2 . 8 E - -  3 - -1 .6E--3  - - 4 . 9 E -  4 --4.4E--  4 
4 - 6 . 6 E - - 4  - - 5 . 7 E - 4  --9.4E--  5 - -1 .2E--4  
5 - - 2 . 2 E -  4 - - 3 . 2 E - 4  --2.5E--  5 --3.8E--  5 
6 --8.2E--  5 - 1 . 6 E - 4  - 7 . 6 E - -  6 - - 1 . 3 E -  5 
7 --3.4E--  5 - 8 . 5 E -  5 - 2 . 6 E - -  6 - -7 .4E--6  b 
8 --1.6E--  5 - - 4 . 4 E -  5 - -1 .4E--6  b - 1 . 1 E - - 7  
9 - - I .7E- -  5 b --2.2E--  5 - -1 .4E--8  - 2 . 2 E - -  8 

10 - 4 . 9 E - -  8 --2.2E--  5 b --2.9E--  9 - 7 . 5 E - - 9  
11 - 4 . 4 E  -- 9 --2.2E -- 7 
12 -- 3.0E - 8 
13 -- 1.2E -- 8 
14 - 6.2E -- 9 

Maximum off-diagonal 
B-matrix element/am. 3.8E - 5 4.0E -- 5 2.5E -- 5 5.0E -- 5 
Final energy/a.u. --316.865086 --316.738570 --316.868893 -316.749979 

aBasis set see text 
bA DIIS extrapolation step was performed in this macroiteration 

m a c r o i t e r a t i o n s  ( ] A E ] ( I O  - 5  a.u. ) .  L e n g s f i e l d  a n d  L i u  [35] d o  n o t  r e p o r t  t he  

c o n v e r g e n c e  b e h a v i o u r  o f  t h e i r  c a l c u l a t i o n s .  

T h e  C P U  t i m e s  f o r  o u r  C A S 7  X212 + c a l c u l a t i o n  a re  l i s t ed  in  T a b l e  7 a n d  

c o m p a r e d  w i t h  t h e  C P U  t i m e s  w h i c h  a r e  r e p o r t e d  in  [36] f o r  t h e  J A S O N 2  

c a l c u l a t i o n s .  N o t e  t h a t :  

i) J A S O N 2  uses  a d i r e c t  C I  a l g o r i t h m  w i t h  C S F ' s ,  R F O 1  a c o n v e n t i o n a l  C I  w i t h  

S l a t e r  d e t e r m i n a n t s .  

ii) T h e  4 - i n d e x  t r a n s f o r m a t i o n  is p r o g r a m m e d  p r o p o r t i o n a l  to  M N  4 in  t h e  

J A S O N 2  p r o g r a m ,  in  t h e  R F O 1  p r o g r a m  i t  is a f a s t  M 2 N  4 ( M  = n u m b e r  o f  a c t i v e  

o r b i t a l s ,  N = n u m b e r  o f  b a s i s  f u n c t i o n s )  s t ep  a v o i d i n g  I /O .  

iii) T h e  e x p e n d i t u r e  f o r  t he  m i c r o i t e r a t i o n s  in  R F O 1  is c o m p a r e d  w i t h  b u i l d i n g  

u p  a n d  d i a g o n a l i z i n g  t he  S X - m a t r i x  o f  t h e  s u p e r - C I  f o r m a l i s m  [12, 36]. 

iv)  T h e  t o t a l  t i m e  f o r  R F O 1  c o n t a i n s  11 o r b i t a l  o p t i m i z a t i o n s  (11 m a c r o i t e r a -  

t ions ) ,  12 i n t e g r a l  t r a n s f o r m a t i o n s  a n d  12 C I  d i a g o n a l i z a t i o n s .  D u r i n g  t he  
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Table 7. Comparison of CPU times (s) for the programs RFO1 and 
JASON2 for a CAS7 calculation of A10 X 2 S  + 
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CPU times in s 

ROF 1 JASON2 

Integral transformation 3.8 4.3 
CI diagonalization 3.7 a 11.4 b 
Microiterations/SX-Matrix ~ 7.5 4.3 
Number of macroiterations 11 27 
Total time 172.7 540.0 

Performance in MFLOPS d 

CYBER205 HITACS810/10 
Peak 200 e 315 f 
Average 25 g 50 g 

a c! dimension t225 SDs, symmetry selection (C2v) reduces the dimension to 
321 SDs and the diagonalization time to 0.63s. 
b CI dimension 784 CSFs 

Explanation see text and [ 12, 36] 
d MFLOPS = l 0  6 floating point operations per s 
e [39] 
f[36] 
g Estimated according to Ohno [40] 

calculat ion the n u m b e r  of  microi terat ions  per macroi te ra t ion  decreases as well as 
the CI d iagonal iza t ion  time. Average values for one macroi te ra t ion  are quoted in 
Table  7. 

F ina l ly  the p rogram package RFO1 is much  more  compact  than  JASON2 or 
U E X P 2  ( R F O I :  9500 F O R T R A N  statements,  J A S O N 2 : 4 4 0 0 0  s ta tements  [36], 
U E X P 2 : 3 2 0 0 0  statements  [26])~ 

5. Conclusions 

In  this paper  we have presented a linearly convergent  (first-order) C A S S C F  
program based on  the Fock-opera to r  method.  Its ma in  characteristics are the 
following: 

1. Convergence rate comparab le  to single conf igura t ion SCF algori thms in  8-12 
macroi tera t ions .  

2. Simple formal ism for the evaluat ion of  the Fock  matr ix  and  extremely simple 
microiterat ive equat ions.  
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3. Renormalization of the Fock matrix elements with the occupation numbers of 
the active orbitals. 

4. Efficient application of the approximate second-order convergence accelera- 
tion of Pulay. 

Feature 2-4 make our formalism competitive to second-order methods with 
respect to overall computational effort. 
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